Retake Test, Mum. Math. 2, May 11, 2023

In front of the questions one finds the weights used to determine the final mark.

Problem 1

Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
\epsilon & 0 \\
0 & \epsilon
\end{array}\right]
$$

for the problem $A x=b$, with $\epsilon=10^{-10}$. For this problem we want to find the least-squares solution.
$\left[\begin{array}{l}{\left[8,{ }^{8}\right]} \\ \hline\end{array}\right.$
as show that it is not possible to solve this problem via the normal equations on a standard PC. having unit round -off error $\sim 10^{-16}$. Use rounding in the intermediate results
(b) 2 Create a $Q R$ factorization of A using the Gram-Schmidt prous.How is this QR factorization used to find the least squares solution and does this lead to a solvable system?
C (0, 8$]$ compute the singular values of A.

Problem 2

2. Consider $A x=b$ with A and b given by

$$
A=\left[\begin{array}{cc}
1 & 10^{-20} \\
2 & 2
\end{array} 10^{20}\right], b=\left[\begin{array}{c}
1 \\
210^{20}
\end{array}\right] .
$$

Hence $x_{2}=1$ and $x_{1}=1-10^{-20} \approx 1$.
Let the unit roundoff be given by $u=10^{-16}$. Below you have to use this to round the intermediate results. What will be the solution if we solve the linear system, including rounding, using, Gaussian Elimination
(a) [0.5] without pivoting,
(b) $[0.75]$ with partial pivoting,
(c) $\lceil 0.75\rceil$ with complete pivoting;
(d) [0.75] with partial pivoting, where a row scaling is applied such that the maximum on each row of the matrix is 1 .
(e) [0.25] Which two approaches will, in general, give the correct result?

Questions continue on other side

Problem 3

3. Consider the graph of a symmetric matrix A depicted below.

(a) [0.4] Make a sketch of the associated matrix (with * if element in matrix is non-zero)
(b) [1.2] Determine the minimum degree ordering and sketch the matrix after reordering. Also motivate your choices.
(c) $[0.8]$ Sketch the L factor of Gaussian elimination without pivoting of the matrix in the previous part. Motivale vour answer.
